Weierstrass and Hadamard products

نویسنده

  • Paul Garrett
چکیده

1. Weierstrass products 2. Poisson-Jensen formula 3. Hadamard products Apart from factorization of polynomials, after Euler's sin πz πz = ∞ n=1 1 − z 2 n 2 there is Euler's product for Γ(z), which he used as the definition of the Gamma function: ∞ 0 e −t t z dt t = Γ(z) = 1 z e γz ∞ n=1 1 + z n e −z/n where the Euler-Mascheroni constant γ is essentially defined by this relation. The integral (Euler's) converges for Re (z) > 0, while the product (Weierstrass') converges for all complex z except non-positive integers. Because the exponential factors are linear, and can cancel, 1 Γ(z) · Γ(−z) = −z 2 ∞ n=1 1 − z 2 n 2 = − z π · sin πz Linear exponential factors are exploited in Riemann's explicit formula [Riemann 1859], derived from equality of the Euler product and Hadamard product [Hadamard 1893] for the zeta function ζ(s) = n 1 n s for Re (s) > 1: p prime 1 1 − p −s = ζ(s) = e a+bs s − 1 · ρ 1 − s ρ e s/ρ · ∞ n=1 1 + s 2n e −s/2n where the product expansion of Γ(s 2) is visible, corresponding to trivial zeros of ζ(s) at negative even integers, and ρ ranges over all other, non-trivial zeros, known to be in the critical strip 0 < Re (s) < 1. The hard part of the proof (below) of Hadamard's theorem is essentially that of [Ahlfors 1953/1966], with various rearrangements. A somewhat different argument is in [Lang 1993]. Some standard folkloric proofs of supporting facts about harmonic functions are recalled.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities for Weierstrass Products

The aim of this note is to find new inequalities for the Weierstrass products n ∏

متن کامل

Determining the order of minimal realization of descriptor systems without use of the Weierstrass canonical form

A common method to determine the order of minimal realization of a continuous linear time invariant descriptor system is to decompose it into slow and fast subsystems using the Weierstrass canonical form. The Weierstrass decomposition should be avoided because it is generally an ill-conditioned problem that requires many complex calculations especially for high-dimensional systems. The present ...

متن کامل

Probability Theory Exponential Functional of Lévy Processes: Generalized Weierstrass Products and Wiener-hopf Factorization

In this note, we state a representation of the Mellin transform of the exponential functional of Lévy processes in terms of generalized Weierstrass products. As by-product, we obtain a multiplicative Wiener-Hopf factorization generalizing previous results obtained by the authors in [14] as well as smoothness properties of its distribution. Résumé. Fonctionnelle exponentielle des processus de Lé...

متن کامل

On Hadamard and Fej'{e}r-Hadamard inequalities for Caputo $small{k}$-fractional derivatives

In this paper we will prove certain Hadamard and Fejer-Hadamard inequalities for the functions whose nth derivatives are convex by using Caputo k-fractional derivatives. These results have some relationship with inequalities for Caputo fractional derivatives.

متن کامل

Rapidly Convergent Series for the Weierstrass Zeta-function and the Kronecker Function

We present expressions for the Weierstrass zeta-function and related elliptic functions by rapidly convergent series. These series arise as triple products in the A∞-category of an elliptic curve. 1. Formulas In this section we derive our formulas by classical means. In the next section we’ll explain how one can guess these formulas from the computation of certain triple products on elliptic cu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013